SAN DIEGO STATE
UNIVERSITY

Virtex-6 ML605 Development Board with 4-DSP FMC-150
ADC/DAC

Department of Electrical and Computer Engineering
Real-Time DSP and FPGA lab

Colin Fera
Matthew Luscher
Ashkan Ashrafi

T M OOIOOT

Figure 1 - ML605 and FMC-150

00T 0010 L) (0) o 2

Project Specific CUSTOMIZATIONScccoeimimimnmininssssnssssssssssssssss s s ssnsnsas 3
T8 =) 10T (L 4
SOftWware REQUITEIMEINLScccoiiimiismismssisssssssssssssssssssssssssssssssssssssassssasssssssssassssasssssesnssssnssssnssssassssanss sansssansens 5
Hardware REQUITEMENLEScouiiimimmisiisssssssssssssssssssssssssssssssssssssasssssssssassssssssssssssssnsssssssssnssssasss sassssassnss 5
Limitations and Specifications ... ————————————— 5

R 11 o 6
8) 0 A o 7
Connecting the MLO0S5 and FMC-150 ... eeeereeneeeseesesseessessesssssssssssssssssessssssssssssessssssssssesees 7
Connecting the Waveform FUNction GENETratorceeeneesesssessessessesssesseessesssessssssssssesns 10

2] (0030 D Vo = o VP 11

R0 {0 o, 12
RUNNing the DeSigN ... sssss s ssssssssssssssssnnss 14
Verification Of SEtUP ... s s s s s sas st s e e s n s e n s e ms e 15
Implementation a Digital FIR Filter using XilinX ISE..... s 19

8 Q0T 00 TP 19

o TS o U =) o O 25

RT/=] 84T U () o TR 26

L] 0 1= 1 L 28
Running the ML605 Reference Design In ISE13.1 ... icinninsisssssssssssssssssssssssssssssssssssnss 29
Designing a Digital LPF in MATLAB......cccisssssssssssi s ssnss 30

8 Q0T 00 TP 30
MATLAB COAE .eneereereeeenseeeeseessesseessesssessesssessessssssessssssessssssessssssesssessasssesssssssssssssssssssssssssssssssesssesssssssssssans 33
MATLAB Filter COffiCIENTS....cueereeeeereereereesseeeessesses e sesseessesse s ssss s s ssssss s ssssssseens 34

LSy)) 1 L e 36

Introduction

The purpose of this tutorial is to help familiarize readers with the use of the AVNET Xilinx
Virtex 6 based ML605 development kit and in particular the accompanying 4-DSP FMC-150
analog to digital converter (ADC) and digital to analog converter (DAC) for real time digital
signal processing (DSP) applications. This tutorial assumes familiarity with hardware
description languages (HDL'’s) and basic concepts of digital signal processing.

By following this tutorial and using the accompanying VHDL\Verilog code the reader
should be able to:

* Configure the DAC to pass data through from the ADC
* Implement a basic Low pass filter with the aid of MATLAB (Located in the appendix)

Portions of this tutorial have been taken from various AVNET and Xilinx tutorials and
documentation accompanying the board. Document names as well as links are provided in
the references section at the end of this document.

Project Specific Customizations

Project based on AVNET RTL Reference Design Tutorial (Available through their website
for ISE 13.1).

Sampling rate changed to the maximum supported by the internal clock of the FMC-
150 at 245.11MHz.

The Digital Up Converter (DUC), Digital Down Converter (DDC), and Direct Digital
Synthesizer (DDS) IP Cores, and supporting code, were removed as they were not
needed for the purposes of this tutorial; however, if you wish to follow the
aforementioned tutorial of which this project is based on, the DUC, DDC, and DDS are
an integral part of their (AVNET) tutorial and must be implemented in the project
provided with this tutorial.

An order 80 digital low-pass filter is implemented in addition to this tutorial as a
reference to verify the functional behavior this tutorial. See Appendix

The project file, originating in ISE 13.1, was moved to ISE 14.4p by the means of
instantiating the minimum required IP cores for the demonstration purposes of this
tutorial, which suggests not all the IP cores in this project are a necessity for proper
functional behavior (i.e. the aforementioned LPF).

Requirements

This section reviews the minimum hardware and software requirements needed to
successfully complete the tutorial.

Software Requirements

* ISE 14.4p (Latest version available when this documents was created. See Code
Customizations section for pseudo-instructions on moving the ISE project, and
dependencies, to a different version of ISE.)

* MATLAB (Optional for design of LPF as mentioned in the Appendix. Also, MATLAB
requires the DSP toolbox.)

(Note: Xilinx ISE must be a fully licensed product. The free web pack will not work.)

Hardware Requirements

e AVNET Xilinx ML605 Development Kit
* 4-DSP FMC-150 ADC/DAC

* Waveform Signal Generator

* Oscilloscope (2- 3 channel)

* MMCX to BNC Coax Cable (Qty 3)

* BNC to BNC Coax Cable

* BNC Splitter

Limitations and Specifications

A key limitation of the FMX-150 is the ADC/DAC is AC coupled effectively creating a high-
pass filter and imposes bandwidth limitations on the hardware. In addition, the DAC has an
82MHz 5t order Chebyshev low-pass filter on its output. Listed below summarizes the
useful reliable-operational bandwidths, as well as some key limitations, outlined in the
FMC-150 user manual.

ADC
* Bandwidth: 400KHz - 250MHz
* Input voltage range: 2V, (note: the gain is adjustable so achieve a 1Vy., range)

* Bandwidth 3MHz - 82MHz
* Output voltage range: 1V,

4-DSP, the manufacturer of the FMC-150, offers a service to convert the FMC-150 ADC/DAC to
DC coupling. In addition, they can alter the low pass filter on the DAC. The unit would have to
be sent in for the modifications at a cost.

Setup

The following instructions will guide the reader through the setup of the aforementioned
required hardware and software for this tutorial.

Hardware

Connecting the ML605 and FMC-150

1. Insert the FMC-150 into LPC FMC connector (/63 on the ML605 board as shown in Figure
1).

Figure 2 - Inserting the FMC-150 board into the ML605 board. Apply slight pressure to ensure proper connection.

2. Connect ADC input B and DAC outputs C and D to MMCX to BNC cables as shown below.
Inserting these cables requires slight force (you should heard and feel the connection
“click” into place. See Figure 2).

Figure 3 - Connecting the signal cables to the FMC-150. When inserted properly, the reader should feel and hear
the cables “click” into place. Inputs A and External Clock are not used in this tutorial.

3. Connect a mini-B USB cable to the USB female |22 on the ML605 labeled JTAG (As shown
in Figure 4). Connect the other end to your computer.

4. Set the dipswitches on the lower right corner ML605 board, adjacent to the USB, to all
OFF.

WiEn

Figure 4 - Connect a mini-B USB cable to the ML605 board and connect the other end to the PC with ISE currently
running.

Connecting the Waveform Function Generator

1. Attach the BNC splitter to output of the function generator. This enables the function
generator’s output to be observed in parallel with the output of the FMC-150 DAC.

2. Connect one of the outputs from the function generator to an input of the oscilloscope
(Channel one of the scope is connected to the output of the function generator as shown in
Figure 6).

3. Connect the other output of the function generator to the ADC on the FMC-150 board
using the MMCX to BNC Coax Cable on port A (Or port B, but note which port the function
generator is connected to because it will referenced later in this tutorial for specific
configuration of the port).

4. Turn on the function generator and oscilloscope and set the function generator to
outputa 1V, sine wave at 5SMHz.

5. Set the oscilloscope to display the waveform to verify proper connection. Using the Auto
Set feature on the oscilloscope should provide you with a decent-viewable window of
the signal from the function generator (See Figure 4).

6. Connect DAC channels C and D to the oscilloscope on channels 2 and 3 of the
oscilloscope; respectively.

7. Ensure the waveform is as expected on the oscilloscope and turn the power to the
board on (A4s shown in Figure 5).

Figure 5 - 1) Connection to the oscilloscope with attached BNC splitter on the output of the function generator. 2)
Connection of the function generator to the input of the ADC on port A of the FMC-150 board (connection of the
MMCX to the FMC-150 board not shown here, please see Figure 2). Refer to the documentation provided with the

oscilloscope and function generator as needed.

10

Block Diagram

Signal Generator Oscilloscope

2 VaAVAY @

PC

USB
/\/ FMC-150

JTAG

PWR

W\

Diagram 1 - Block diagram of how to
setup should look.

11

Software
Before beginning this section ensure that ISE 14.4 is installed and licensed.

1. Unzip the software provided with this tutorial (fmc150_ISE_14_4.zip) to a suitable
location (Experience has shown that locations with spaces in the path may cause issues).

2. Launch ISE Design Suite 14.4

3. From the File Menu, select Open Project and locate the ISE project file ‘fmc150_ISE_14 4’
(as shown in Figure X)

150_ISE_14_4\fm
Edit View Project Source Process Tools Window Layout Help
New Project... B X|E) ('!| » /',}ix/'glh/{I:%H » o » P»'Q
€ Opeliiviscs «0d X &E[112 clk_to_fpga_p : in std_logic a
Open Example... = tlz) clk _to_fpga_n : in std_logic
Project Browser... T — 114 ext_trigger_p : in std_logic
Copy Project... il ext_trigger_n : in std_logic
- 116
CIosePro;ect 117 —--Serial Peripheral Interface (SP1
= D New CtrlsN | ML605_fmc150_syn (] 118 spi_sclk : out std_logic
2 119 spi_sdata : out std_logic
¥ Open... Ctrl+O —| 120 -
Close Al 122 -- BDC specific signals
% 122 adc_n_en : out std_logic |y
v b Save Ctrl+S » 123 adc_sdo : in std_logic
: Save As... » 124 adc_reset : out std_logic
. % | 125
E,nu sl lected 6 126 —-- CDCE specific signals
+ . . 1 5
ErnEE e 127 cdce_n_en H r?ut std_rog-c
EH . O 128 cdce_5do : in std_logic
= Print... Ctrl+P —| 129 cdce_n_reset : out std_logic
A R il > 130 cdce_n_pd : out std_logic
- CEIAE 131 ref en : out std_logic
Recent Projects N 132 pll_status : in std_logic
133 i
Eit e A e —iEio i _
| & Start | & Design | Fies | Libraries | |2 Apc_auto_calibration.vhd] | [2) misos_fnc150.vhd [:
@ Errors g Find in Files Results Console 1\ Warnings
Open an existing project Ln150 Coll VHDL

Figure 6 - Opening the project from ISE.

M e Ml
& Open Project =

(OO [Computer » 05(C) » fmats0TsEl44 » — < [4|[seomnfmasosEias P
= - = —
Organize v New folder
S 4 Name : Date modified Type Size B
o=). xinx_auto_0_xdb 5/18/20131:49PM File folder
B Downloads) st 5/17/20131:39PM File folder
S8l Recent Places 5 ads62p49_init_mem 5/17/20131:44PM Xilinx ISE Project 6KB
- 2 amc7823.init_mem 5/17/20131:44PM Xilinx ISE Project 5KB
& Uibrries] cdce72010_init_mem_ext 5/17/20131:44 PM Xilinx ISE Project 5KB |
B Documents 5 cdce72010_init_mem_int 5/17/20131:44PM Xilinx ISE Project 5KB
& Music 54 dac3283 _init_mem 5/17/20131:44 PM Xilinx ISE Project 5KB =
S Pictures 5/18/20131:53PM Xilinx ISE Project 44 K8 P
B videos = icon 5/17/20131:44PM Xilinx ISE Project 6KB
4 1LA_ADC_cali S/17/20131:44 PM XilinxISE Project 5K8

- ﬁ ila_baseband_out 5/10/201311:04 PM Xilinx ISE Project 5KB ~

File name: fmc150_ISE_14 4 v [1SE Project Files (*aise) -
e I

"M Comnuter

Figure 7 - Open the project from the location of the unzipped contents of the project provided with this tutorial.

12

4. Select the top file ML605_fmc150 and in the process window (directly below the Design
Hierarchy), double click Generate Programming File (As shown in Figure 8). This will
synthesize the design producing a bit file. This step takes approximately three minutes
to complete.

X File Edit View Project Source Process JTools Window Layout Help [Z“E“EJ
Dt&HﬂlIdb“ I‘X|¥7(¥| »§/+/—;§X‘/-@|/‘|§% »f»’»@
Desi <0 & X| , | = Design Overview - -~
= = e e P I & -~ [2) Summary B Met
[|View: ©@ {8} implementation ©) 3 Simulation 6 B 108 Properties
J[g] | Hierarchy = [2] Module Level Utilization |11 No 1
U %] . fmc150_ISE_14 4 d 9 [Timing Constraints 3
=15] xcﬁ\gx240t.1ff1156 c, [2) Pinout Report 2 No]
A 5 [l MLBOS_fmclS0 - MLE0S_fmcl50_syn % Clock Report
— . X vio inst - VIO (VIO. - | Static Timing i
v | 'f} — (el » o | B Errors and Warnings 3 Yes |30
- @ [£] Parser Messages 4 Yes [
P | ¥ No Processes Running " [£) Synthesis Messages]
= = [Translation Messages 5 Yes |1
'?I: Processes: ML605_fmcl50 - ML605_fmcl50_syn [Map Messages -
4| ~ X Design Summary/Reports - [8 Place and Route Messages <le ves |1
—| & Design Utilities [Timainahd -
Cff & User Constraints Timing Constraints -~ Ves 1
" | B TQL\ Synthesize - XST - Show Columns 7 Yes |
M 2.1\ Implement Design -~ [¥] Met E P
- P2E) Generate Programming File Constraint L 18 (¥ [
% Configure Target Device - [¥] Check
¢ Analyze Design Using ChipScope Worst Case Slack 9 Yes 1_
Best Case Achievable ~|[«<E »
I’ Start | Ei$ Design F@ Files | [y ubraries | | = Design Summary B8 l
| @ Errors [Find in Files Resuits Console 1\ Warnings

Figure 8 - Select the top module from the Design pane and double click Generate Programming File to generate a
bit file and synthesize the design.

13

Running the Design

In this part of the tutorial you will program the FPGA with the bit file created in the
Preparing the Software section. You will then configure ADC channel(s) for optimal
performance. Finally you will pass a sine wave into the ADC from the function generator
where it will be output by the DAC and viewed on the oscilloscope.

14

Verification of Setup

1. With the Xilinx project navigator open from the last step of Preparing the Software,
double click on Analyze Design Using ChipScope (A window should popup as shown in
Figure 9).

2. Inthe upper left of the ChipScope Pro window, click the %% icon. This icon opens the
JTAG search chain and searches for Xilinx cores.

3. Two devices should be detected (displayed in the-most pane of the ChipScope window),
DEV: 0 and DEV: 1.

4. Rightclick DEV: 1 and select Configure (As shown in Figure 9).

] ChipScope Pro Analyzer [mi605_fmc150] . — ———)
File View JTAGChain Device Window Help
4| Project: mi605_fmc150 [l
JTAG Chain
DEV:0 MyDevice0 (System_ACE_CF)
RV EZYTE Y |

¢ DEV:1 MyDevice1

Rename

Signals: DEV: 1 UNIT

¢ Data Port Configure...

o ADCChA | ShowIDCODE

L T‘:g’;fe’rcp‘;nf Show USERCODE / ﬂ\
Show Configuration Status
Show JTAG Instruction Register \V/,

ChipScope Pro

Reading project file: C:fmc150_ISE_14_4\mI605_fmc150.cpj

Figure 9 - This window will appear only after a bit file has been generated and the reader clicked on Analysis
Design using Chipscope. This figure shows what you should expect to see in the left pane after step two from
above.

15

U1

After clicking on Configure, Click Select New File and locate ‘ml605_fmc150.bit’
Select open then select OK. This is the bit file that was generated in Preparing the

Software. This will program the FPGA using the selected bit file. (Note, if the board is
power cycled, the board must be reprogrammed). See Figure 10.

most pane populate (As shown in Figure 11).

0

va

-

iystem_ACE_CF) |

4 ChipScope Pro Analyzer [ml605_fmcl... =

JTAG Configuration

File: mI605_fmc150.bit
Directory: C:Mmc150_ISE_14_4
[] Partial Reconfiguration Bitstream

[] Clean previous project selting

Select New File

[] Import Design-level CDC File

Design-level CDC File
[] Auto-create Buses

File:

TR

Directory: C

simplified

q Select New File

NOTE: This operation cannot be undone.

& Open Configuration File

The FPGA is now programmed and you should expect to see the ChipScope Pro left-

- BcEE

Lookin: .. fmc150_ISE_14_4
- _bbx
-~ 8 _C9
Recent ltems < —ngo

. _Xmsgs
| ads62p49_init_mem
| adsB2p49_init_mem_ste

L. tmp
. xInx_auto_0_xdb
L. xst

B mis05_fmc150.bit

Files of type: :bitﬁles (*.bit)

")
)
3
3
J
)
Desktop 1, amc7823_init_mem_ste
|, cdce72010_init_mem_ext_ste
{‘. . cdce72010_init_mem_int_ste
~ J. dac3283_init_mem_ste
My |, demo_to
Documents . .
1. ipcore_dir
m: 1. iseconfig
~ 1. MMCM
Computer |, mmcm_adac
1. testbench
.
‘.I! File name: | mI605_fmc150.bit
Neiwork

- Cancel

[

Number used as Dual Port RAM

Number used as Single Port RAM

Number used as Shift Register

Number using O6 output only N

Figure 10 - Select the generated bit file generated in Preparing the Software.

&} ChipScope Pro Analyzer [ml605_fmc150]

Eile View JTAGChain Device Window Help

=l

Project: mi605_fmc150 ‘ M

JTAG Chain

DEV:0 MyDevice (System_ACE_CF)
¢~ DEV:1 MyDevice1 (XCBVLX240T)
System Monitor Console
¢ UNIT:0 MyVIOO (VIO)
¢ UNIT:1ILA_DDC_Out (ILA)
Trigger Setup
Waveform
Listing B

Signals: DEV: 1 UNIT: 0
Async Input Port |
¢ Sync Input Port
o= ADC Ch AiDelay at output of iodela

©= ADC Ch B iDelay at output of iodel3 =

©- ADC CLK iDelay at output of iodela

©- Register Data / FPGA RD from FMQ_|
CH: 47 SPI bus BUSY

Async Output Port

¢ Sync Output Port
©- Register Address
I © ADC Ch AiDela

| —

AN
=7,

=/

ChipScope Pro

Reading file: C:fmc150_ISE_14_4\mI605_fmc150.bit

ss% |

Figure 11 - After the FGPA is programmed, the lost-most pane should populate with relevant information
regarding the detected-programmed devices.

16

8. Select UNIT: O from the left-most pane and double click VIO Console (As shown in Figure
12).

9. Select ADC channel A iDelay from the VIO console, type 25 and hit enter (If you intend to
use Chanel B of the ADC then it should set to the same value).

Note: The connection between the ADC and DAC within the FPGA is not registered making
setup and hold times more critical. The setup and hold times cannot be maintained within
the FPGA at the sampling frequency used in this tutorial. The iDelay (Incremental Delay)
adds a sub-clock period delay to the clock at critical points allowing the setup and hold
times to be maintained. Without this you will essentially see noise being output by the
DAC.

@] ChipScope Pro Analyzer [mI605_fmc150]

—
File View JTAGChain Device VIO Window Help
® | JTAG Scan Rate: [250ms - U ® |k
Project: mI605_fmc150 |+l €8 vio console - DEV:1 MyDevice1 (XC6VLX240T) UNIT:0 MyVIOO (VIO) e’
JTAG Chain
DEV:0 MyDevice0 (System_ACE_CF) Bus/Signal Value
¢ DEV:1 MyDevice1 (XCBVLX240T)
System Monitor Gonsole o ADC Ch A iDelay at output of iodelayel 0
¢ UNIT:0 MyVIO0 (VIO) © ADC Ch B iDelay at output of iodelayel 25
VIO Console
¢ UNIT:1 ILA_DDC_Out (ILA) o ADC CLK iDelay at output of iodelayel 00
Trigger Setup o Register Data / FPGA RD from FIC150 00000000
Waveform
Listing SPI bus BUSY 0
Signals: DEV: 1 UNIT: 0 [A0 G A Delay 0
Async Input Port |4/}l > Apc cn B iDelay
¢ Syncinput Port c -
o~ ADC Ch A Delay at output of iodel [Abe cLx netay 00
o ADC Ch B iDelay at output of iodeld®| | & Register Address 0000
©- ADC CLK iDelay at output of iodela|
o Register Data/ FPGARD from FMQ_| 0000000

CH: 47 SPI bus BUSY
Async Output Port

¢ Sync Output Port
o Register Address

S I~
=T i

Reading file: C:fmc150_ISE_14_4\mI605_fmc150.bit

Figure 12 - VIO Console within ChipScope Pro window.

10. Check the dipswitches and ensure the four green LED’s numbed 5-8 are illuminated (A4s
shown in Figure 13). The green LEDs indicate the clocks on the FMC-150 and FPGA are
phase-locked; this is critical. The LEDs are indicative of the proper functional behavior
of the connection between the ML605 and FMC-150.

Figure 13 - LEDs 5-8 must be illuminated and indicate the clocks on the FMC-150 and ML605 are phase-locked.

17

11. Activate channels one and two on the oscilloscope, if not done so already, and verify
that a sine wave at the previously set frequency of 5MHz is displayed on both channels.
(As shown in Figure 14)

of o A

Save
Image

Ink Saver
o ML
Destination
USB

Save

File
Utilities

Figure 14 - The yellow signal shown in this figure is the output of the function generator and the blue signal is the
signal from the DAC of the FMC-150 board.

Note: Using the BNC splitter with transmission lines at differing lengths is far from ideal. The
sine waves displayed will not be identical but will be similar (As shown in Figure 14). The
output from the DAC will be out of phase with respect to the function generator’s output and
have different amplitudes, which should be within about 30% of the function generator’s
measured reference signal, but the frequency and form should be very similar.

This completes this portion of the tutorial.

18

Implementation a Digital FIR Filter using Xilinx ISE

Process

1. First create the COE file; this file initializes the block memory with the filter coefficients.
To change the filter coefficients this file will need to be reimported each time.

The format of the file is as follows:

The semicolon character ends every command and can also be used to denote comments.
Any characters following the semicolon up until the next line return is ignored. The file
should be saved in ASCI format with file extension.coe.

radix=16; ; Denotes that the filter data is hex, other options are 2 or 10
; for binary or decimal respectively.

The following is the coefficient vector, one coefficient should appear on each line the lines
are terminated with a comma until the last line that is terminated with a semicolon. The file
can have any number of coefficients between 1 and over 200 depending on which IP core
version and options are selected. The number of coefficients dictates the order of the filter.

COEFDATA=
fff1,
ffe5,
fff1;

2. Right click on the IP Core called lowpass and select remove and then ok. In the next part
of this tutorial we will recreate this IP core.

19

Figjec a0

X© File Edit View Project Source Process Tools Window Layout Help
DPEF L[YsDbXx|vwalrraRrR|lAmEO,sere L@
= =1-F3 @ = Deslé\ (;::nr\:‘:\:ly o) ML605_fmc150 Project Status il
[1] | View: © {8} Implementation ©) 6 O 10B Properties Project File: |duc_ddc_umts_virtex6.xise | Parser Errors: No
&F| | Hierarchy g [Module Level Utilization Errors
& %] dac3283_init_mem_inst - dac3283_init_mem (dac3283_init_mem.xco) 5] [Timing Constraints Module Name: [ML60S_fmc150 Implementation |New
= & [W) amc7823_ctrl_inst - amc7823_ctrl - amc7823_ctrl_syn (amc7823_ctrl.vhd) o [Pinout Report State:
& & [fmcl50_stellar_cmd_inst - fmc150_stellar_cmd - arch_fmc150_stellar_crr [Clock Report et covix240t2FF1156 =
— 2p0 - pulse2pulse - syn (pulse2pulse.vhd) d @ Static Timing Devioe
&l g alop a| = E d Warni
p2pl - pulse2pulse - syn (pulse2pulse.vhd) rrors and Warnings -
[% P2p2 - pulse2pulse - syn (pulse2pulse.vhd) ﬁ [£) Parser Messages L vm ISE 14.4 = Warning=
: [p2p3 - pulse2puilse - syn (pulse2pulse.vhd) 24 [2 Synthesis Messages "““7 " :
@ i - syn (pulse2pulse.vhd; e [2 Translation Messages Design Goal: |Balanced -:nutng
— lse2pul (bulse2pulse.vhd esults:
— e - syn [2 Map Messages
— J amc7823_init_mem_inst - amc7823_init_mem (amc7823_init_mem.xco) [2) Place and Route Messages Design ilinx Default (unlocked) «Timing
= sample_pass_inst - sample_pass (sample_pass.v) % Timing Messages Strategy: Constraints:
& firl § = Bitgen Messages = t |System Setti = 1 T =
icon_inst - icon (icon.xco) L e 3 @ Al Implementation Messages Environment: |System Setfings Pl Iesa
{ ila_dac_inst - ila_dac (ila_dac.xcq (5] Add Source... L =l Detaiéed Reports
mi605_fmclS0.uck = - Synthesis Report L4
Chl i LSRR D 0 Translation Report SR]
[Map Report
P | B2 No Processes Running & Ro’“" [Place and Route Report Report Name Status | Generated | Errors | Warnings | Infos
= S Post-PAR Static T Report
74 | Processes: firl - lowpass El % Power Report o« || |Symthesis Report
o |© % CORE Generator Manual Compile Order oeen Proners on Report
& Manage Cores £, Set as Top Module R %I E":;,e Message Filtering Map Report
e SmartGuide... Eoax Optional Design Summary Contents Place and Route
- [7] Show Clock Report Report
@ [source Libraries » Implement Top Module 2 [7] Show Failing Constraints Power Report
=y work Show Warnings -
& w File/Path Displ. ic Timi
ile/Path Display > [Show Errors Post-PAR Static Timing
Report
Expand All Sigen Report
Collapse All
84 Find... Ctrl+F T _
Design P i P> Design Summary n]
@ Errors [4) Source Properties...

Figure 15 - Removing the original LPF.

3. Right click anywhere in the design hierarchy window and select New Source
4. Click IP (CORE Generator and Architecture Wizard), type the name lowpass under the
filename field and select next.

20

B . New Source Wizard @

Select Source Type

Select source type, file name and its location.

eu

BMM File
ChipScope Definition and Connection File
Implementation Constraints File

% ‘IP (CORE Generator & Architecture Wizard)

MEM File
Schematic

User Document
Verilog Module
Verilog Test Fixture
VHDL Module

VHDL Library

VHDL Package

| VHDL Test Bench
2 Embedded Processor

File name:

|

Location:

|C:\ISE\COMPE475\Final Project\COMPE475_PL_HUVpcore_dir | [uaa)

Add to project

Next >

Cancel

Figure 16 - New source -> IP

21

5. When prompted, select yes to overwrite the existing core named lowpass.
6. Expand the view to Digital Signal Processing, then Filters and highlight FIR Compiler
(version 5.0, as shown in Figure 19) and click next and then finish.

r—
ae Seee S Procoms Tk Nedee ape ey
@ NewSourcerz.ard
M . Ao oxle® e ArER,PAA NB=S @ pxP 0
[L
|| SelectIP
¥
; Create Coregen or Architecture Wizard IP Core.
[View by Funcion | by e |
Name “ Version AXM4 AXHM4-Stream AXH4-Lite Status License Vendor Lib
[| =7 Automotive & Industrial
‘ Lj AXI Infrastructure
- .)) L
[} |~7 Digital Signal Processing
|~7 Building Blocks
B [=7 Filters |
J CIC Compiler 20 Production xilinx.com ip
CIC Compiler 30 AXI4-Stream Production xilinx.com ip
DUC/DDC Compiler AXI4-Stream Production xilinx.com i
L % FIR Compiler i Production xilinx.com
FIR Compiler AXI4-Stream Production xilinx.com
| FIR Compiler 6.3 AXI4-Stream Production xilinx.com ip N
B
K |~ FPGA Features and Design
. |~7 Math Functions
' =7 Memories & Storage Elements
|~ Standard Bus Interfaces
|~7 Video & Image Processing
L
" < | m] » |
" .
; Search IP Catalog: N

All IP versions Only IP compatible with chosen part

[text][conce

Figure 17 - Selecting a IP core

22

7. Click the vector drop down and change this to COE file, then click the browse button
and select the COE file created in step 1. The COE file will be imported and the
coefficients file field will show a path. If this area is highlighted in red then there may be
an issue with the format of this file.

Fill in the input sampling frequency and clock frequency in this case they are 245.76

and 491.52 respectively. The first page of the fir compiler menu should look as shown

below.

< -
* FIRCon;ﬂern -

o PLrArRRPFA A ANE=D

Documents View

|| Freq. Response & X
/ Frequency Response (Magnitude)
I = E
(™ = -
" o
I -
| & 1]
g
2“7
f=4
N g *
s L]
{ - i
. S
i = I l ”'“

° oz o4 os oz 1 12

Normalized Frequency (x PI rad/sample)

Set to Display : 1 Range: 1..1
Filter Analysis
Passband Stop band
Range : 0.0 - 05 0.5 1.0
Min : -26.226911 dB
Max : 102.390973 dB 22.907857 dB

Ripple : 128.617884 dB

“J 1P symbol|

Freq. Response | 4 Implementation Details

r e » L L —

e -

l-a.glc * R FIR compller xilinx.com:ip:fir_compiler:5.0

Component Name | lowpass :

Filter Coefficients
Select Source :
Coefficient Vector : |6,0,-4,-3,5,6,-6,-13,7,44,64,44,7,-13,-6,6,5,-3,-4,0,6
Coefficients File : C:\Users\Administrator\Desktop/\filter.coe [Browse...] { Show...]
Number of Coefficient Sets : 1 Range: 1..256
Number of Coefficients (per set) : 81
Filter Specification
Filter Type : [Single Rate -
Rate Change Type : Integer
Interpolation Rate Value : |1 Range: 1..1 =
Decimation Rate Value : |1 Range: 1..1
Zero Pack Factor : 1 Range: 1..1
Number of Channels : 1 Range: 1..64
Hardware Oversampling Specification
Select format : [Frequency Specification e
Input Sampling Frequency : 245.76 Range: 0.000001..550.0 MHz
Clock Frequency : W Range: 245.76..550.0 MHz
Input Sample Period : 1 Range: 1..10000000 Clock cycles

Back Page 1 of 4 Next >] [Generate] [Cancel] [Help

Figure 18 - Defining the filter.

23

9. Click next to move on to page 2 of the FIR compiler menu.

10. Change the input data width to 14 (Note the FMC-150 has a 14Bit ADC)

11. Change output rounding mode to any choice other than full precision, in this case we
have chosen symmetric rounding to zero.

12. Change the output width to 16 all other choices can be left at the default values as
shown below.

Documents View
Freq. Response & X PR -
mg'C - RE FIR compller xilinx.com:ip:fir_compiler:5.0
N Frequency Response (Magnitude) Filter Architecture : [Systohc Multiply Accumulate v] -
= Coefficient Options
T:D i [7] Use Reloadable Coefficients
:] Coefficient Structure :
= - Coefficient Type :
] Quantization Integer Coefficients
g : N Coefficient Width : 16 Range: 2..49
g * E Best Precision Fraction Length
& - . . -
g -] Coefficient Fractional Bits : |0 Range: 0..0
| = E I W Datapath Options
i : i I Ill'll l ” ‘ Number of Paths : 1 Range: 1..16 E
I ‘c i ' ” Input Data Type :
. = Input Data Width : 14 Range: 2..48
- —n ' ulz ' n; ' u’s ' n; ' ' ' L ' Input Data Fractional Bits : 0 Range: 0..14
™ Normalized Frequency (x PI rad/sample) Output Rounding Mode : | Symmetric Rounding to Zero -
d Output Width : 16 Range: 1..31
Set to Display : 1 Range: 1..1 Output Fractional Bits : 0
AlEanEEE [] Allow Rounding Approximation
Passband Stop band 7] Registered Output 5
Range : 0.0 - 05 0.5 - 1.0
A Min: -26.226911 dB
Max : 102.390973 dB 22.907857 dB
Ripple : 128.617884 dB i
mm’ % Freq. Response m Page 2 0f 4 | Next>] l Generate l [Cancel] [Help] m

Figure 19 - FIR Compiler Widow

13. At this point, since no other options need to be changed from the default values click
generate. This will generate the IP core; the process takes about 1-2 minutes.

14. The filter IP core you created should be visible under the Verilog module
sample_pass_inst; this indicates that the filter is being instantiated under that module as
shown below.

= sample_pass_inst - sample_pass (sample_pass.v)

o
% firl - lowpass (lowpass.xco)

A s 2 :
N icon_inst - icon (icon.xco)

This concludes this part of the tutorial.

24

Instantiation

This code below is the actual sample_pass_inst where the filter in this tutorial is being
instantiated. Note the multiplexers that control how data is routed between inputs and
outputs and also between the inputs and the filter. The dipswitches that control the
multiplexers are numbered one through eight, and are shown in Figure 25.

module sample_pass(

input clk_fs,clk_gfs,

input [13:0] din_a,din_b,
output [15:0] dout_a,dout_b,
input [7:0] gpio_dip_sw

’

//wires used in [0 Muxes
wire [13:0] dinf;
wire [15:0] doutf;

//10 Muxes select how inputs are passed to outputs.
assign dout_a = (gpio_dip_sw[1:0] == 1) ? doutf : (gpio_dip_sw][1:0] == 2) ? {din_b,2'b00} : {din_a,2'b00};
assign dout_b = (gpio_dip_sw[3:2] == 1) ? doutf: (gpio_dip_sw[3:2] == 2) ? {din_a,2'b00} : {din_b,2'b00};

//combinational assignment of the either input A or B to the filter
assign dinf = (gpio_dip_sw[5]) ? din_a : din_b;

//the actual instantiation of the filter.
lowpass firl (.din(dinf),.dout(doutf),.clk(clk_gfs));

endmodule

Figure 20 - Dipswitches.

25

Verification

At this point it is assumed that all previous tutorial sections have been completed
* Setup
o Preparing the Hardware
o Preparing the Waveform Signal Generator
o Preparing the Software
* Design a Simple Digital Filter using MATLAB
* Implement a Digital FIR Filter using ISE

1. Ensure your setup identical to Diagram 1 in the Preparing the Hardware section.

2. Activate channels one, two and three on the oscilloscope and verify that a sine wave at
the previously set frequency is displayed on all three channels (As shown in figure 22.
Note, the purple signal is the signal being passed through the filter. Its appearance should
look very similar because the frequency of the signal from the function generator has not
been tuned to the cutoff frequency of the filter).

File

‘0.690 s Utilities
M 186ns TCH1 EDGE
CHZ2 ~~ 11U

Figure 21 - Expected signals displayed on the oscilloscope.

3. Record the peak amplitude of the filtered sine wave to verify the cutoff frequency when
you increase the frequency of the signal later in the instructions..

4. Increase the frequency of the function generator until the amplitude of the filtered
signal drops to .707*Vpeax (of the reference signal). This is the -3DB point at which signal
power has fallen by half its original voltage denoting the start of the filter’s cutoff
frequency.

5. Compare this point to the -3DB frequency shown in the MATLAB plot; they should
similar, but not exact.

26

6. Continue to increase the frequency of the function generator beyond the filter cutoff.
The amplitude of the filtered signal should fall gradually to zero as the frequency is
increased towards the stop frequency (As shown in Figure 23 and Figure 24).

T g

Save |
Image

Ink Saver

Save

File
Utilities

Save
Image

Ink Saver

off ML

Save

File
Utilities

~ 1 CHZ2 Y CH4 -
Figure 23 - Function generator output at 9Mhz.

This concludes this part of the tutorial.

27

Appendix

The appendix of the tutorial provides the reader with additional tutorials and
documentation.

28

Running the ML605 Reference Design In ISE13.1

The purpose of this section is to provide notes regarding the process of running of the
ML605 reference design tutorials provided by AVNET.

You can obtain the ML605 reference design tutorial of your choice from:

http://www.xilinx.com/products/boards-and-kits/EK-V6-ML605-G.htm

Notes:

* The reference designs do not work in any version of ISE newer than 13.1.

* Only the tutorial instructions themselves are different. The project code included
with this tutorial is a minimization of the actual code from AVNET.

* Even if using ISE 13.1, some IP cores cannot be opened because they are not fully
supported.

* You can obtain code versions of the tutorial for ISE back to 12.2 (from the link
above). The IP cores in these versions can be opened/modified.

* The tutorial is unusable until the ADC CH A and B iDelay’s are set, as demonstrated
in the main tutorial. These should be set as soon as the ML605 board has been
programed using ChipScope. The recommended value is approximately 25.

* While running the tutorial

o The DAC outputs a constant ~12MHz sinusoid. This acts as a function
generator to drive the ADC which is then viewed in ChipScope.

o Dipswitch 3 can be switched to bypass the digital up converter and digital
down converter such that the ADC input is passed directly out of the DAC
output.

* The sampling frequency used by the tutorial is 66.44MHz

29

Designing a Digital LPF in MATLAB

Process

In this part of the tutorial you will generate a simple digital low pass filter using MATLAB.
The filter will have quantized 16bit coefficients, such that it can be readily implemented on
the FPGA.

The MATLAB script used to generate this filter is appendix A of this document. The
following enumerated steps are provided the reader with a better understanding of the
creation

1. First you must decide upon the specifications of your filter. For this particular filter we
will specify: order, sampling frequency, pass band and stop band frequencies.

* Ahigh filter order is recommended, here will use order 80. This ensures that the
filter cutoff is relatively sharp.

* Pass band is the frequency at which the signal begins to roll off; here we chose
S5MHz.

* Stop band is the frequency at which the signal will be totally attenuated; here we
chose 9MHz.

* Sampling frequency is the frequency of sampling on the ADC. The code provided
with this tutorial sets the sampling frequency at 245.11MHz

2. Save the filter specifications as variables in MATLAB.

fp = 5e6; %freq at beging of pass band = 5MHz
fst = 9e6; %freq at end of stop band = 9MHz

n=80; %filter order = 80
fs=245e6; %sampling frequency = 245MHz

3. Save the filter specifications in a MATLAB data structure

f=fdesign.lowpass('N,Fp,Fst',80,fp,fst,fs)

f=
Response: 'Lowpass'
Specification: 'N,Fp,Fst’
Description: {'Filter Order';'Passband Frequency';'Stopband Frequency'}
NormalizedFrequency: false
Fs: 245000000
FilterOrder: 80
Fpass: 5000000
Fstop: 9000000

4. Generate the low pass filter.
h = design(f, 'firls’, "Wpass', 1, 'WStop', 100, 'FilterStructure’, 'dffir');

30

5. Change the data format for the filter that was just created to fixed.

%set filter to fixed type
set(h,'Arithmetic’,'fixed');

6. Review the specifications of the filter that was just created.
h=
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [1x81 double]
PersistentMemory: false
CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision’

31

7. Use the filter visualization tool to view the frequency response of the filter. See Figures
15 and Figure 16.

hfvt = fvtool(h);

Mauniludeﬂ:&ponae[dB]
I I I

—
IS S SO cocptil N
i

Magnitide (E)
H b 0y
T
|

>

oA

Frequency (MHz)

Figure 24 - Magnitude Response

Phase Response
I

A F T T

1 | ' 1
20 40 60 80 100
Frequency (MHz)

Phazs fradianz)

:TT‘\TTF{‘l/J/j/T
/
/
——
4_,
/

T Y Y A

Figure 25 - Phase Response

8. Export the filter coefficients as 16bit hex such that they can be readily use in a Xilinx
COE file to initialize block memory in an FIR core.

fcfwrite(h,'simple_lowpass','hex")

In the above command, h is the filter itself, simple_lowpass is the name of the file to be
exported, hex is the data format.

The coefficients are listed under numerator:

Numerator:
fe6b
fd99
fca3

32

MATLAB Code

%The following script:

%-Sets parameters for a simple digital low pass filter

%-Generates the low pass filter

%-Displays the filters response graphically

%-Retrieves hex coefficients which can be directly used in a COE file
%

fp = 5e6; %freq at beging of pass band = 5MHz
fst = 9e6; %freq at end of stop band = 9MHz

n=80; %filter order = 80
fs=245e6; %sampling frequency = 245MHz

%Instruct MATLAB to design the filter specified above
f=fdesign.lowpass('N,Fp,Fst',80,fp,fst,fs);
% Generate a direct form low pass filter using above specifications

h = design(f, 'firls’, 'Wpass', 1, 'WStop', 100, ...
'FilterStructure’, 'dffir");

%set filter to fixed type

set(h,'Arithmetic’,'fixed");

%use the filter visualization tool to
hfvt = fvtool(h);
%retrieve filter coefficients as hex list

fcfwrite(h,'simple_lowpass','hex")

33

MATLAB Filter Coefficients

% Generated by MATLAB(R) 7.12 and the Signal Processing Toolbox 6.15.
% Generated on: 19-May-2013 16:44:36
% Coefficient Format: Hexadecimal

% Discrete-Time FIR Filter (real)

Off —mmmmmm e

% Filter Structure : Direct-Form FIR

% Filter Length :81

% Stable : Yes

% Linear Phase :Yes (Type 1)

% Arithmetic : fixed

% Numerator 516,19 -> [-6.250000e-02 6.250000e-02)

% Input :s16,15->[-11)
% Filter Internals : Full Precision
% Output :536,34 -> [-2 2) (auto determined)

% Product :s31,34 -> [-6.250000e-02 6.250000e-02) (auto determined)
% Accumulator :s536,34 ->[-2 2) (auto determined)

% Round Mode :No rounding

% Overflow Mode : No overflow

Numerator:
fe6b
fd99
fca3
fb8b
fa57
f90c
f7b4
f659
f507
f3ce
f2bc
fle2
f151
f11b
fl4e
f1fc
f333
fafe
f766
fa72
fe24
027c
0774
0d02
1319
19a7
2096
27cf
234
36a8
3ela

34

453a
4cl6
527e
5853
5d78
61d4
654f
67d9
6965
69e9
6965
67d9
654f
61d4
5d78
5853
527e
4cl6
453a
3ela
36a8
234
27cf
2096
19a7
1319
0d02
0774
027c
fe24
fa72
f766
fafe
f333
f1fc
fl4e
f11b
f151
fle2
f2bc
f3ce
f507
f659
f7b4
f90c
fa57
fb8b
fca3
fd99
fe6b

35

References

[1] No author provided. 2010. Xilinx Vertex-6 DSP Development Kit with High-Speed
Analog. Available:
https://www.em.AVNET.com/Support%20And%20Downloads/virtex6dsp_rtl_referen
ce_design_tutorial_13_1.zip

[2] No author provided. 2010. FMC150 User Manual. Available:

https://www.em.AVNET.com/Support%20And%20Downloads/FMC150_user_manual.
pdf

36

