SAN DIEGO STATE
UNIVERSITY

Parametric IR Filtering on an FPGA

Department of Electrical and Computer Engineering
Signal Processing Research laboratory

David Walker-Howell and Ashkan Ashrafi

Table of Contents

oo 18T o] R 3
R GUIT BB . ..ttt et ettt et e e e e 3
B 1 12T Y PP 3
D= [0 DS 4
o E T T (] PP 6
MM At ON. ... e e 7
Graphical User INterface.t e e e e 13
Testing and VerifiCation.o 15
RO NI CES . . . et 19

Introduction

This paper presents a tutorial for a real-time parametric IIR filter implementation on the Xilinx Virtex-5 FPGA
ML506 Evaluation Platform. The FPGA implements a biquad IIR filter architecture with the ability to
dynamically load new filter coefficients via serial UART communication. A host PC running a Python-based
graphical user interface (GUI) allows real-time control of the filter’s parameters such as gain, center-frequency,
and bandwidth. In this tutorial, the peaking/notch type filter is used as demonstration for its practical application
in audio equalization. However, this design can be generalized for other filter types like lowpass, highpass,
bandpass, etc.

Requirements

The requirements specified are necessary to be able to follow this tutorial step-by-step. However, most of the
software components are generalized and modular, and thus could be extended for use with other hardware
platforms.

Hardware Requirements

Xilinx ML506 Evaluation Platform (features Virtex-5 FPGA).
Xilinx Platform Cable USB Il

Digilent Pmod DA2 digital-to-analog converter (DAC).
Digilent Pmod AD1 analog-to-digital converter (ADC).

USB to 3.3V UART breakout board.

Waveform function generator.

Oscilloscope (2+ channels).

Software Requirements

e ISE Design Suite 14.7 (Version used in the making of this tutorial. Other versions may be possible to

use.)
e Python 3.7.1 (with the following library dependencies installed).
o Numpy
o PyQt5
o pyqtgraph
o PySerial
Theory

IR filters are advantageous for digital filtering applications requiring variety of frequency response
selectability. In general, the filters magnitude response can be met more efficiently compared to the Finite
Impulse Response (FIR) filters [1]. Due to the IIR filters design process, which derives from continuous-time
filter designs, the generation of filter coefficients can be computed using closed form equations. This leads to
fast, non-iterative computer programs for generating the filter coefficients, which is desired for adjustments of
the frequency response in real-time.

A useful application for a parametrically adjustable IIR filter is an audio equalizer. Audio equalizers, often used
in music applications, boost or attenuate specific frequency bands. These equalizers require filter banks of
parametrically adjustable filters to be able to control gain, center frequency, and bandwidth. The filters in an
equalizer have a peaking or notch type filter form to allow for unity gain passing of the input signal at the
frequency bands not being adjusted Figure 1. The architecture and hardware implementation of the parametric
IR filter presented in this tutorial demonstrates the concepts of a digital hardware-based equalizer.

Frequency response

15.0 1
12.5 1
10.0 A
7.5
5.0
2.5 1

0.0 4

—25

Magnitude (dB)

—5.04

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
logl0(Freq.) (Hz)

Figure 1: Example of parametric equalizer frequency response using peaking/notch filter.

The biquad filter is used in this project because it is a second order filter that allows for a quality magnitude
response with only two poles and two zeros. A basic form of the filter, called Direct Form I, is given as

b0+b12_1+b22_2

Frequency Response H(z) =~ PP

Impulse Response yvlk] = box[k] + bix[k — 1] + byx[k — 2] — a;y[k — 1] — a,y[k — 2]

The five coefficients are computed using a set of closed form equations which are given in [2]. Note, depending
on the type of filter used, there are different sets of closed form equations that can be derived.

Since the IIR filter is implemented in the digital hardware of the FPGA, the coefficients cannot be infinite
precision floating-point. The IIR filter implementation used in this project requires the coefficients to be fixed-
point two’s complement binary. The conversion from floating-point to fixed-point introduces round-off error
that can make the filter response significantly differ from the original design or even cause the filter to become
unstable [3]. As an example, if the coefficients of the poles are too close to the unit circle, then the conversion
to fixed-point might cause the poles to go outside the unit circle, resulting in an unstable filter. There are a few
ways to help the errors be less significant.

1. Use as many bits as possible for fixed-point representation.

2. Make the number of fractional bits only 1-2 less than the total number of bits. For example, if 16-bits are
used for representation, make 14-bits the fractional part.

3. Normalize the coefficients and signals for filtering to mitigate overflow.

In this project, the coefficients and signals are represented with a total width of 16-bits and a fractional width of
14-bits.

System Design

The architecture of the FPGA implementation is broken up into multiple modules. See Figure 2.

Parametric EQ

Control Analog-to-Digital Digital Input
GUI (PC) I — Convert P
e i Module
Serial Analog Input
Data v
Raw Filter Filter
UART Receiver Bytes o Data Unpack “GETTS',_ Coefiicient Controller Coeffs. .| Biquad lIR Filter
Module i Module v Module "1 (peaking/notch)
Filter Select
Analog Output
Digita-o-Analog Digital Qutput
S Converter < —
Module

Figure 2: System block diagram.

First, the desired filter response is designed via the Python GUI on the host PC. The filter coefficients are
generated and serialized to be sent to the FPGA via UART serial communication. The Verilog UART Receiver
Module reads in 10-bit (1 start bit, 8 data bits, 1 stop bit) data packets and extracts the data. This data is then
sent to the Data Unpack Module to check which coefficient data the individual bytes correspond to. Figure 3
shows what a valid coefficient data packet looks like.

SERIALIZED COEFFICIENT DATA PACKET

START1 | START2 | FILTER# | COEFFICIENTS END | BUFFER

<OXCA> | <DXCA> a1,a2b0,b1,b 2 <0XFA> | <0X00>

1BYTE | 1BYTE | 1BYTE 10 BYTES 1BYTE | 2BYTE
« 16 BYTES »

Figure 3: Coefficient data packet that is unpacked and validated by the Data Unpack Module.

Once the coefficients are successfully unpacked, the coefficients are moved into a simple RAM block in the
Coefficient Controller Module. The Coefficient Controller Module is responsible for timing when to change the
coefficients of filter to ensure the change in frequency response is fast and stable. Coefficients are changed in
the filter when the filter module has finished its accumulation step and before the next input is sampled. Finally,
the Biquad IIR Filter Module samples the inputs from the ADC at every sample clock, performs a multiplication
and accumulation sequence, then sends the output to the DAC. Figure 4 shows the clocking of the IIR filter
computations with respect to the sample clock and FPGA’s system clock.

SAMPLE_C M
SYS_CLK LF JJJJJ&
< ‘ >

temp{0] = a1 * y[k-1] accumulator = accumulator + tempi] %[k-2] = =[k-1]
temp{1] = a2 * y{k-2] i=i+1 ¥[k-1] = x[k-0]
temp{2] = b0 * x{k-0] y[k-2] = yk-1]
temp[3] = b1 * xfk-1] y[k-1] = yk-0]
temp{4] = b2 * xk-2] yik] = accumulator

Figure 4: Verilog IIR filtering computation stages.

Hardware Setup

USB UART Serial Breakout

UART communication is used to transmit the filter coefficients from the host PC to the FPGA. A USB to
UART converter breaks out the USB data lines to I/O UART TX/RX pins that can be connected to the FPGA
via GPIO. In this project, the SparkFun USB UART Serial Breakout - CY7C65213 [4] was used. Any USB to
UART breakout board will work fine for this project. Make sure the logic voltages match; for the ML506
Evaluation Board, the single-ended GPIO voltage logic is 3.3V.

1. Connect the host PC to the converter with an appropriate USB cable.

2. Connect the ground pin on the converter to the ground on the FPGA.

3. Connect the transmit pin (TX) on the converters to pin number 2 (HDR1 2) on the FPGA’s singled-
ended GPIO.

Figure 5: USB to UART breakout board connect to the Virtex-5 single-ended GPIO.

FPGA Pin Name USB/UART Converter Pin Name
HDR1 2 TX
GND GND

Table 1: Virtex-5 FPGA GPIO connection with the USB to UART breakout board.

Digilent Pmod DA2 DAC

The Digilent Pmod DA2 12-bit, 2 channel DAC [5] converts the digital output signal from the IR filter to an
analog signal that can be observed with an oscilloscope. The Pmod DA2 communicates with the FPGA logic
through the single-ended GPIO pins. The communication protocol is similar to SPI, where the 12-bit resolution
digital signal is synchronously sent from the FPGA to the DAC.

Figure 6: The Digilent Pmod DA2 12-bit, 2 channel digital-to-analog converter. Source: [5].

6

Figure 7 shows the GPI1O to DAC connections on the FPGA. The right-most column of pins is the
single-ended GPI1O pins. The middle column are all ground pins.

1. Connect the DA2 pins (1, 2, 3, 4) to FPGA’S GPIO pins (4, 6, 8, 10) respectively.
2. Connect the DA2 VCC pin to a 3.3V power pin on the FPGA.
3. Connect the DA2 GND pin to ground on the FPGA.

GND

GPIO

15

* to“.’(.- -~ *

K oul gqu}- 7 X8

[T VECVa—] . [~ Veesy
i

& -

L

Figure 7: The highlighted GPIO pins to connect the Digilent Pmod DA2.

FPGA Pin Name Pmod DA2 Pin Name Pmod DA2 Pin Number
HDR1 4 ~SYNC 1
HDR1 6 DINA 2
HDR1 8 DINB 3
HDR1 10 SCLK 4
GND GND 5
VCC3V3 VCC 6

Table 2: Virtex-5 FPGA GPIO pin to PMOD DA2 pin connections.
The connection order for the DAC is shown in Table 2. Male-to-female jumper wires are suggested.

Digilent Pmod AD1 ADC

The Digilent Pmod AD1 12-bit, 2 channel ADC [6] also provides an SPI-like communication protocol with up
to 1MSa of 12-bit conversion. It’s operation and connection type are similar to the Pmod DA2 DAC.

1. Connect the AD1 pins (1, 2, 3, 4) to FPGA’S GPIO pins (12, 14, 16, 18) respectively.
2. Connect the AD1 VCC pin to a 3.3V power pin on the FPGA.
3. Connect the AD1 GND pin to ground on the FPGA.

GND

GPIO

Figure 8: The highlighted GPIO pins to connect the Digilent Pmod AD1.

FPGA Pin Name

Pmod AD1 Pin Name

Pmod AD1 Pin Number

HDR1 12 CcS 1
HDR1_14 DO 2
HDR1 16 D1 3
HDR1 18 SCK 4

GND GND 5
\VCC3V3 VCC 6

The connection order for the ADC is shown in Table 3. Male-to-female jumper wires are suggested.

Implementation

Table 3: Virtex-5 FPGA GPIO pin to PMOD DA2 pin connections.

To implement the digital system on the FPGA, Xilinx ISE Design Suite 14.7 is used.

1. Inadesired file location to store the project files. Open Xilinx ISE Design Suite. Under File, click New
Project. The project wizard in Figure 9 will appear. Give the project a name and save it in any desired

location. Make sure the Top-level source type is HDL. Finally click Next.

& New Project Wizard X
€ Create New Project
Specify project location and type.
Enter a name, locations, and comment for the project
Name: parametric_IIR_fiter
Location: C:\Users\User\Desktop\parametric_TIR_fiter EI

Working Directory: | C:\Users\User\Desktop\parametric_IIR_fiter

Description:

Select the type of top-level source for the project
Top-level source type:

HDL v

More Info Next > Cancel

Figure 9: New Project Wizard.

2. Next, the project settings, shown in Figure 10 will be set to ensure the Xilinx software configures to the
correct FPGA hardware. In the Evaluation Development Board dropdown select Virtex 5 ML506
Evaluation Platform; this will automatically fill-in the correct properties of Product Category,
Family, Device, Package, and Speed. The rest of the settings should match Figure 10. Click Next,
then Finish.

& New Project Wizard X

€ Project Settings
Specify device and project properties.

Select the device and design flow for the project

Property Name Value

Evaluation Development Board Virtex 5 ML506 Evaluation Platform v
Product Cateqory

Family

Device

Package

Speed

Top-Level Source Type i
Synthesis Tool XST (VHDL/Verilog)

v
Simulator Modelsim-SE VHDL v
Preferred Lanquage VHDL v
Property Specification in Project File | Store all values v
Manual Compile Order 0

VHDL Source Analysis Standard VHDL-93 v
Enable Message Filtering O

More Info < Back Next > Cancel

Figure 10: Project property settings.

3. The ZIP folder Parametric_IIR_Filter FPGA.zip contains the Verilog and Constraints files for this
project. Unzip this folder to a suitable location. As shown in Figure 11, select the Project tab, then click
Add Copy of Source to add all the files to the project. Select all the unzipped files shown in Figure 12.
Click Open, then Next.

File Edit View WIGCa® Source Process Tools Window Layout Help

O 3 & || [Newsource.. SRR 2RI
| Design | £5] Add Source... i
T
g| | Hierarchy New VHDL Library... &
= Manual Compile Order
s Import Custom Compile File List...
?J Thevie Disable Hierarchy Reparsing to the project using the
= toolbar : by using the Design,
Fles, a Force Hierarchy Reparse
s
r Use: Cleanup Project Files...
= Archive...
Generate Tcl Script... ect.
Design Goals & Strategies... pithe proectd
.. Design Summary/Reports

Figure 11: Add copy of source files to project.

[0 Name Date modified Type Size
Mz | clock_divider.v 10/20/2019 8:18 PM Verilog File 1
IZE‘ coefficient_controller.v 4/11/2020 6:01 PM Verilog File 6
Mz | digilent_PMOD_AD1.v 4/18/2020 6:38 PM Verilog File 4
EE} digilent_PMOD_DA2.v 11/3/2019 2:27 PM Verilog File 8
Mgz | IR filter_biquad_df1.v 4/14/2020 2221 PM Verilog File 8
Mz | receivew 4/9/2020 10:48 AM Verilog File 6
@m simple_dual_port_mem.v 4/11/2020 5:57 PM Verilog File 2
@&‘ top_level.v 4/22/2020 9:51 AM Verilog File 9
IZIQ top_level_constraints.ucf 4/20/2020 12:02 PM UCF File 2
Mgz | unpack_bytes.v 4/11/2020 6:08 PM Verilog File 8

< >

name: ["top_level_constraints.ucf" “unpack_bytes.v" “clock_divider.v' VI Sources(*txt *.vhd *.vhdl *v *. v

Figure 12: All the necessary source files for implementation.

4. Make sure the module top_level.v is set as the top level module. A top level module is signified by 3
squares with one highlighted green and have all of the other modules nested underneath it. See Figure
13.

@ File Edit View Project Source Process Jools Window Layout Help
DeE@ i[snbx/wal [+ s8R ,rRIRA=E] sR[rcLQ

[Design «08x s
[| view: @ 6 1mplementation O M| Smulation 5 &9 F UART RECEIVE MC
| =| 70 parameter RECEIVER_CLK COUNTS = 88, RECI
il | Hierarchy 71 wire RECEIVER CLK;
| € parametric IR filter = 72 wire RXC: -
= €3 xcSvsx30t-141136 73 wire [7:0] UDRRX;
S [.« top_level (top_level.v) 74 //Instantiate the clock divider to divic

receiver_clk - clock_divider (clock_divider.
¢ - receive (receive.)
unpack - unpack_bytes (unpack_bytes.v)

2 75 clock_divider #(.COUNTS(RECEIVER CLK_COU
—| 76 (.CLK_IN(CLK_27MHZ_FPGA),
A 77

% 78 //Instantiate the receive RX module
sample_clock - clock_divider (clock_divide 79 receive rx (.CLK(RECEIVER CLK), .RX IN(E
filter_1 - IIR filter_biquad_df1 (IR filter biq 7% | g5 - -
da2_pmod - digilent PMOD_DA2 (digilent| xg | 51 assign GPIO_LED 1 = (UDRRX == 8'h00) 2 |

©

@
[<]

coeff_controller - coefficient_controller (c

ad1 - digilent_ PMOD_AD1 (digilent_PMOD| 82 //
clk_Thz - clock_divider (clock_divider) =
U top_level_constraints.ucf

84 1/ DATZ
85 //wire [7:0] filter_num;
86 wire [15:0]) coef(_to_con\:xollex;
£ 5 87 wire [2:0] coeff_addr_to_controller;
! 88 wire WRITE_EN;
P | T2 No Processes Running 89
o 90 //Instantiate the unpack bytes module.
71, | Processes: top_level A o1 unpack_bytes #(.NUM_FILTERS (1)) unpack |
;g{: p Design Summary/Reports 92 .coeff_ addr (coeff_ac
@ Design Utilities 93 .coeff_out (coeff_to_
A|w User Constraints 94 1/
| ® 8 Synthesize - XsT . <
¥ 1o om P
& Sert B Desgn) Fles [[) Lbrares b3 Design Summary (out of date) xJIE]

Figure 13: How to project looks after importing source files.
10

Lastly, the design is synthesized for the FPGA hardware and a programming file (bitstream) is generated
to load the design onto the FPGA. On the bottom-left hand-side in the Processes task bar double-click
Synthesize — XST. It will be noticed that there are numerous warning messages after the synthesis
completes; this is okay and should not result in any problems. Next, double-click Implement Design.
Finally, after the implantation stage is successful, double-click Generate Programming File. The result
should look similar to Figure 14.

v |< S 7 s PMC
4 14 NET AD1 CS

P> | T No Processes Running 15 NET ADl_DATA 1

"f‘ Processes: top_level @ 16 NET AD1 DATA 2

> o i © 17 NET AD1_SCLK

= % Design Summary/Reports = o G S,
—| @ Design Utilities

%'t e g User Constraints

— | @ 8L\ Synthesize - XST

~ | @ #2.8\ Implement Design

@ Generate Programming File
1% Configure Target Device
€* Analyze Design Using ChipScope
<

& St O3 Dpesgn U] Fies DY ubrares X Design Summary (Programming File Generat
Console

i) INFO:Bitgen:40 - Replacing "Auto" with "NoWait" for option "Match cycli
commonly, bitgen has determined and will use a specific value inste
generic command-line value of "Auto". Alternately, this message ap
the same option is specified multiple times on the command-line. II
case, the option listed last will be used.

Process "Generate Programming File" completed successfully

<

[E] console o Errors 1\ Wamings [@§ Find in Fies Results
Figure 14: Post successful Synthesis, Implementation, and Bitstream.

Connect the Xilinx Platform Cable USB 11 to the FPGA and PC. This device is needed to program the
bitstream from the PC to the FPGA.

01970 BP0

CLOYE - 11X [EOS
YGL'0 === AS 1enad

185N 898D Wopeld

i

Figure 15: Xilinx Platform Cable USB Il connected.

In Xilinx ISE, select iMPACT from the Tool dropdown. This will open the iMPACT editor, the tool to
load the bitstream to the FPGA. See Figure 16. In the iIMPACT tool, double-click Boundary Scan,
follow instructions to Right click to Add Device, and click Initialize Chain. See Figure 17.

11

roe s g ey

v g

NN I IV) N L e AR L o (e B e R

File Edit View Project Source Process Window Layout Help

S U PN TEN

D2EF|IS] L X |© o |@ constraintsEditor.. |R|A BB M=
sign « £ Core Generator... yerview

View: Simul PlanAhead p, fammary
| @ @ Om @ N i)B Properties
i| | Hierarchy Schematic Viewer 04, e | evel Utilization
‘E] ﬁ parametric_|IR_filter @ Timing Analyzer » |ming Constraints
= = 6 ch:sxSOt-1ff1136 EPGA Editor » [noutReport
= (Ve top_level (top_level.v) Jock Report
i [v] receiver_clk - clock_divider (clock 84 XPower Analyzer.. i Timing
i - receive (receive.v) £, IMPACT... | Warnings
i i [v] unpack - unpack_bytes. (ynpack_! SmartXplorer y prser Messages

coeff_controller - coeffment_com._v-,fv,,m, — ——ynthesis Messages

5 - H -
[} sample_clock - clock_divider (clock_div , | — [@ Translation Messages
Bl e e T B Map Messages
e — — [Place and Route Messages
» | €2 No Processes Running [2) Timing Messages

l [2) Bitgen Messages

{; IProcesses: top_level [2 Allimplementation Messages

Figure 16: Opening ISE iMPACT.

@ (SE MPACT (P20131013) - [Boundary Scan] =3
| B it wew Opentions Quipwt Detug Wndow Hep s x
D2E| Ga%t =27,
eacT P woax
+% Boundary Scan
4 Sysemace
s] Create PROM Fie (PROM File Format.
1 (8] WebTak Dy
&dd il Device. crien
Add o i Device.. CtieX
Cable Auto Connact lnisakize JTAG chain
HEACT Proceses wosx Cable Setusp..
........ Opesations e e
& oundery Yo
Corac woax
B comon © Eron B Wemess
oo Cabla Connaction |Ho Fils Open

Figure 17: Initialize chain to program FPGA.

8. The last step is to set the Generated Programming File to be the configuration file for the FPGA. Make
sure the targeted FPGA device in the tool chain, labeled xc5vsx50t, is highlighted green as shown in
Figure 18. Right click on the device, then choose Assign New Configuration File. From the file
explore that pops-up, navigate to the main ISE project folder and select top_level.bit. See Figure 19.

9 ISE MPACT (20731013 - Bouniay S

o AN
aad
e enp ettt xczace s
ypess iypess ypass iypess eass

B woex

dane.
PROGRESS_END - End Operation.
Elapsed ime = sec.

CIJESS . e —

Configuration [Piatform Cable USE 1 (6 Mz | [usb-hs

Figure 18: Assign New Configuration File.

12

@ Assign New Configuration File X
« + EE 499 » ISE » parametric_lIR filter t
Org v Newfold O)
Quick access
ngo
B Desktop iy
& xmsgs
& Downloads &l iseconfig
% Documents 4 xinx_suto_0 xdb
& Pictures ¢ &l xst
@ Creating_Xilinx_| & | top_levelbit
o Images ;
& SMILE_Lab_REU_
o Tutorial Report
£# Dropbox
dropbox.cache >
File name: |top_level.bit All Design Files (*.bit *.bt *.nky

Figure 19: Selecting the generate programming file (.bit) to program the FPGA.

9. Right click on the device xc5vsx50t and click Program. See Figure 20. Now the FPGA is programmed.

T
| ' ISEIMPACT (P.20131013) - [Boundary Scan] - b=

% File Edit View Opentions Output Debug Window Help
I DXmuNXi @ 2T AN
«0O&x

emACE [

ate PROM File (PROM File Format... :

=2 S T
xcfi2p 951 xcSw

Get Device [D
xcf32p S144x1 xccace 5
bypass bypass bypass bypass top W ‘Gt Device Signature/Usercode
One Step SVF
One Step XSVF

™0

Add SPU/BPI Flash..
Assign New Configuration File.
Set Programming Properties..
Set Erase Properties,

MPACT Proceses “08 % Launch File Assignment Wizard
Available Operations are Set Target Device

= Program

= Get Device ID

= Get Device Signature/Usercode

= Read Device Status

= One Step SVF

b One Step XSVF

5 Boundary Scan

08X
I)INFO:iMPACT:501 - '5': Added Device xc5vsx50t successfully. ~

>

Configuration | Platform Cable USB Il |6 MH:z ush-hs

Figure 20: Program the generated programming file to the FPGA.

Graphical User Interface

The graphical user interface (GUI) provides a visual guide to design the filter response, generate the fixed-point
coefficients, and communicate those coefficients to the FPGA via serial communication. This GUI is built in

Python 3 using the PyQt5 graphics library. Custom class and functions were developed for the fixed-point filter
design of the biquad IIR filter.

13

1 Filter GUI - [} X

Gain (dB) Fc (Hz) BW (Hz)
+11.52 d8 | [4.92 k2 | [4.03 k2

Send Coefficients

Figure 21: Python based GUI.
Using the GUI

1. Inapreferred directory unzip the file Parametric_IIR_Filter_GUI.zip to get the GUI source code. This
folder contains to subfolders called PySP and GUI. These two directories must be in the same parent
directory. The command line (or terminal) will be used to launch the GUI within the Python
environment.

2. Open a command line terminal of choice that can be used to run Python 3 applications with the required
libraries (i.e. this may be a virtual environment for some users). Navigate into the GUI directory using
the “cd” command.

3. Before running the command to start the GUI, it is necessary to know the COM port that the USB
UART breakout board is communicating over. For example, if Windows is being used, then the COM
port can be found in the Device Manager control panel. Figure 22 shows that the breakout board is
communicating on “COM10.” For other operating systems finding the communication port will differ.

& Device Manager - m] X
File Action View Help
e =0 Bm B kX

4| Biometric devices -
O Bluetooth
) Computer

= Disk drives
[Display adapters
B Firmware
W Human Interface Devices
=@ IDE ATA/ATAP| controllers
_ﬁ Imaging devices
£3 Intel(R) Dynamic Platform and Thermal Framework
& Jungo
= Keyboards
@ Mice and other pointing devices
[Monitors
@ Network adapters
~ & Ports (COM & LPT)
¥ Communications Port (COM3)
USB Serial Port (COM10)
% USB Serial Port (COM4)
= Print queues
A Printers
[Processors
[3 sensors
B Software components
B software devices

8l Crund vidan and nama rantrallare

Figure 22: Windows Device Manager to find COM port for USB to UART breakout.

4. In the terminal run the command python main.py --com_port [COM port name], where COM port
name is the name of the communication port discussed in step 3. See Figure 23.

14

(research) C:\Users\User\Dropbox\EE_499\Python\GUI>python main.py --com_port COM10

Figure 23: Example of command to start GUI.

Figure 24: How the GUI looks when opened.

5. Adjust the gain, center-frequency, and bandwidth as desired. As the sliders are adjusted the frequency
response and pole-zero plot will reflect the expected response of the filter. Once the desired filter
response is obtained, click the Send Coefficients button to transmit the filter coefficients to the FPGA.

Testing and Verification

The system is ready to be tested. A function generator is used to supply the input signal to the ADC. The Pmod
AD1 ADC allows an input voltage range of 0V - 3.3V, so have the function generator output be within this
range. Hook the function generators probe to the ADC’s analog input on channel 1 (A1). Next, the two channels
of the oscilloscope are attached to measure the original input signal and resulting filtered output signal. The
comparison is useful to identify that the magnitude frequency response corresponds to the design. One
oscilloscope probe is connected to the DAC output on channel 1 to measure the filtered signal and the second
oscilloscope probe is connected on channel 2 of the DAC to measure to original signal sampled from the
function generator.

15

FPGA Parametric EQ
Implementation. Oscilloscope

Function
Generator

Figure 26: Test and verification setup.

The output from the DAC of the filtered signal will have a magnitude scaled down by a factor of 4. This is
ensuring the DAC will never be the source of saturation or encounter overflow that will corrupt the signal.
Below are several test cases that verify the desired operation of parametric IR implementation.

Figure 27: All pass, unity gain of signal. The input signal is given in the color blue and the output signal is the color yellow. However,
since the filter is unity gain across all frequencies, the signals in the oscilloscope output are nearly on-top of one another.

16

Figure 28: The parametric EQ parameters specified were G=+10.0dB, F_c = 1000Hz, BW=632 Hz. The input signal (blue) is a
1000 Hz sine. The output signal (yellow) is the 10dB amplified.

Bl RIGOL ™0 W s

Figure 29: The parametric EQ parameters specified were G=-10.0dB, F_c = 1000Hz, BW=632 Hz. The input signal (blue) is a 1000
Hz sine. The output signal (yellow) is the 10dB attenuated.

W Fiter GUI e RIGOL ™0 H e 0. T £ 20,0y

Ty

11

i

Freg=1.00kHz

Figure 30: The parametric EQ parameters specified were G=+15.0dB, F_c = 9000Hz, BW=812 Hz. The input signal (blue) is a 1000
Hz square wave. Notice, the output signal (yellow) has the 9™ harmonic amplified (9000Hz) by about 15dB.

17

RIGOL ™0 H s00us |3
£l

Ho

Figure 31: The parametric EQ parameters specified were G=+15.0dB, F_c = 3000Hz, BW=66 Hz. The input signal (blue) is a 1000
Hz square wave. Notice, the output signal (yellow) has the 3™ harmonic amplified (3000Hz) by about 15dB.

15,0090

Figure 32: The parametric EQ parameters specified were G=+15.0dB, F_c = 55Hz, BW=40 Hz. The input signal (blue) is a 1000 Hz
sine wave. Notice, the output signal (yellow) is extremely noisy and corrupted. This is due to the fixed-point poles being outside the
unit circle. This is an example of the difficulties of converting an infinite precision filter design to a fixed-point design.

18

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Harlow: Pearson, 2014,

R. Bristow-Johnson, “RBJ Audio-EQ-Cookbook9],” RBJ Audio-EQ-Cookbook - Musicdsp.org
documentation, 04-May-2005. [Online]. Available:
https://www.musicdsp.org/en/latest/Filters/197-rbj-audio-eq-cookbook.html. [Accessed: Feb
2020].

D. G. Manolakis and V. K. Ingle, Applied digital signal processing: theory and practice. Cambridge,
U.K.: Cambridge University Press, 2011. ch. 15, pp. 902-967.

SparkFun, SparkFun USB UART Serial Breakout - CY7C65, Accessed on: May 12, 2020.

[Online]. Available: https://www.sparkfun.com/products/13830

“Pmod DA2: Two 12-bit D/A Outputs,” Digilent. [Online]. Available:
https://store.digilentinc.com/pmod-da2-two-12-bit-d-a-outputs/. [Accessed: Apr-2020].

“Pmod AD1: Two 12-bit A/D Inputs,” Digilent. [Online]. Available:
https://store.digilentinc.com/pmod-ad1-two-12-bit-a-d-inputs/. [Accessed: Apr-2020].

Xilinx, ML505/ML506/ML507 Evaluation Platform User Guide, UG347 datasheet. May. 2011.

19

https://www.sparkfun.com/products/13830

