
1

Parametric IIR Filtering on an FPGA

Department of Electrical and Computer Engineering

Signal Processing Research laboratory

David Walker-Howell and Ashkan Ashrafi

2

Table of Contents

Introduction………………………………………………………………………………………………………. 3

Requirements…………...………………………………………………………………………………...……… 3

Theory….……...…………………………………………………………………………………………………. 3

Design…………………………………….……………………………………………………………………… 4

Hardware Setup…………………………………………………………………………………………………... 6

Implementation…………………………………………………………………………………………………... 7

Graphical User Interface……………………………………………………………………………………...… 13

Testing and Verification……………………………………………………………………………………...… 15

References…………………………………………………………………………………………………..….. 19

3

Introduction

This paper presents a tutorial for a real-time parametric IIR filter implementation on the Xilinx Virtex-5 FPGA

ML506 Evaluation Platform. The FPGA implements a biquad IIR filter architecture with the ability to

dynamically load new filter coefficients via serial UART communication. A host PC running a Python-based

graphical user interface (GUI) allows real-time control of the filter’s parameters such as gain, center-frequency,

and bandwidth. In this tutorial, the peaking/notch type filter is used as demonstration for its practical application

in audio equalization. However, this design can be generalized for other filter types like lowpass, highpass,

bandpass, etc.

Requirements

The requirements specified are necessary to be able to follow this tutorial step-by-step. However, most of the

software components are generalized and modular, and thus could be extended for use with other hardware

platforms.

Hardware Requirements

• Xilinx ML506 Evaluation Platform (features Virtex-5 FPGA).

• Xilinx Platform Cable USB II

• Digilent Pmod DA2 digital-to-analog converter (DAC).

• Digilent Pmod AD1 analog-to-digital converter (ADC).

• USB to 3.3V UART breakout board.

• Waveform function generator.

• Oscilloscope (2+ channels).

Software Requirements

• ISE Design Suite 14.7 (Version used in the making of this tutorial. Other versions may be possible to

use.)

• Python 3.7.1 (with the following library dependencies installed).

o Numpy

o PyQt5

o pyqtgraph

o PySerial

Theory

IIR filters are advantageous for digital filtering applications requiring variety of frequency response

selectability. In general, the filters magnitude response can be met more efficiently compared to the Finite

Impulse Response (FIR) filters [1]. Due to the IIR filters design process, which derives from continuous-time

filter designs, the generation of filter coefficients can be computed using closed form equations. This leads to

fast, non-iterative computer programs for generating the filter coefficients, which is desired for adjustments of

the frequency response in real-time.

A useful application for a parametrically adjustable IIR filter is an audio equalizer. Audio equalizers, often used

in music applications, boost or attenuate specific frequency bands. These equalizers require filter banks of

parametrically adjustable filters to be able to control gain, center frequency, and bandwidth. The filters in an

equalizer have a peaking or notch type filter form to allow for unity gain passing of the input signal at the

frequency bands not being adjusted Figure 1. The architecture and hardware implementation of the parametric

IIR filter presented in this tutorial demonstrates the concepts of a digital hardware-based equalizer.

4

Figure 1: Example of parametric equalizer frequency response using peaking/notch filter.

The biquad filter is used in this project because it is a second order filter that allows for a quality magnitude

response with only two poles and two zeros. A basic form of the filter, called Direct Form I, is given as

Frequency Response 𝐻(𝑧) =
𝑏0+𝑏1𝑧

−1+𝑏2𝑧
−2

1+𝑎1𝑧−1+𝑎2𝑧−2

Impulse Response 𝑦[𝑘] = 𝑏0𝑥[𝑘] + 𝑏1𝑥[𝑘 − 1] + 𝑏2𝑥[𝑘 − 2] − 𝑎1𝑦[𝑘 − 1] − 𝑎2𝑦[𝑘 − 2]

The five coefficients are computed using a set of closed form equations which are given in [2]. Note, depending

on the type of filter used, there are different sets of closed form equations that can be derived.

Since the IIR filter is implemented in the digital hardware of the FPGA, the coefficients cannot be infinite

precision floating-point. The IIR filter implementation used in this project requires the coefficients to be fixed-

point two’s complement binary. The conversion from floating-point to fixed-point introduces round-off error

that can make the filter response significantly differ from the original design or even cause the filter to become

unstable [3]. As an example, if the coefficients of the poles are too close to the unit circle, then the conversion

to fixed-point might cause the poles to go outside the unit circle, resulting in an unstable filter. There are a few

ways to help the errors be less significant.

1. Use as many bits as possible for fixed-point representation.

2. Make the number of fractional bits only 1-2 less than the total number of bits. For example, if 16-bits are

used for representation, make 14-bits the fractional part.

3. Normalize the coefficients and signals for filtering to mitigate overflow.

In this project, the coefficients and signals are represented with a total width of 16-bits and a fractional width of

14-bits.

System Design

The architecture of the FPGA implementation is broken up into multiple modules. See Figure 2.

5

Figure 2: System block diagram.

First, the desired filter response is designed via the Python GUI on the host PC. The filter coefficients are

generated and serialized to be sent to the FPGA via UART serial communication. The Verilog UART Receiver

Module reads in 10-bit (1 start bit, 8 data bits, 1 stop bit) data packets and extracts the data. This data is then

sent to the Data Unpack Module to check which coefficient data the individual bytes correspond to. Figure 3

shows what a valid coefficient data packet looks like.

Figure 3: Coefficient data packet that is unpacked and validated by the Data Unpack Module.

Once the coefficients are successfully unpacked, the coefficients are moved into a simple RAM block in the

Coefficient Controller Module. The Coefficient Controller Module is responsible for timing when to change the

coefficients of filter to ensure the change in frequency response is fast and stable. Coefficients are changed in

the filter when the filter module has finished its accumulation step and before the next input is sampled. Finally,

the Biquad IIR Filter Module samples the inputs from the ADC at every sample clock, performs a multiplication

and accumulation sequence, then sends the output to the DAC. Figure 4 shows the clocking of the IIR filter

computations with respect to the sample clock and FPGA’s system clock.

Figure 4: Verilog IIR filtering computation stages.

6

Hardware Setup

USB UART Serial Breakout

UART communication is used to transmit the filter coefficients from the host PC to the FPGA. A USB to

UART converter breaks out the USB data lines to I/O UART TX/RX pins that can be connected to the FPGA

via GPIO. In this project, the SparkFun USB UART Serial Breakout - CY7C65213 [4] was used. Any USB to

UART breakout board will work fine for this project. Make sure the logic voltages match; for the ML506

Evaluation Board, the single-ended GPIO voltage logic is 3.3V.

1. Connect the host PC to the converter with an appropriate USB cable.

2. Connect the ground pin on the converter to the ground on the FPGA.

3. Connect the transmit pin (TX) on the converters to pin number 2 (HDR1_2) on the FPGA’s singled-

ended GPIO.

Figure 5: USB to UART breakout board connect to the Virtex-5 single-ended GPIO.

FPGA Pin Name USB/UART Converter Pin Name

HDR1_2 TX

GND GND
Table 1: Virtex-5 FPGA GPIO connection with the USB to UART breakout board.

Digilent Pmod DA2 DAC

The Digilent Pmod DA2 12-bit, 2 channel DAC [5] converts the digital output signal from the IIR filter to an

analog signal that can be observed with an oscilloscope. The Pmod DA2 communicates with the FPGA logic

through the single-ended GPIO pins. The communication protocol is similar to SPI, where the 12-bit resolution

digital signal is synchronously sent from the FPGA to the DAC.

Figure 6: The Digilent Pmod DA2 12-bit, 2 channel digital-to-analog converter. Source: [5].

7

Figure 7 shows the GPIO to DAC connections on the FPGA. The right-most column of pins is the

single-ended GPIO pins. The middle column are all ground pins.

1. Connect the DA2 pins (1, 2, 3, 4) to FPGA’S GPIO pins (4, 6, 8, 10) respectively.

2. Connect the DA2 VCC pin to a 3.3V power pin on the FPGA.

3. Connect the DA2 GND pin to ground on the FPGA.

Figure 7: The highlighted GPIO pins to connect the Digilent Pmod DA2.

FPGA Pin Name Pmod DA2 Pin Name Pmod DA2 Pin Number

HDR1_4 ~SYNC 1

HDR1_6 DINA 2

HDR1_8 DINB 3

HDR1_10 SCLK 4

GND GND 5

VCC3V3 VCC 6
Table 2: Virtex-5 FPGA GPIO pin to PMOD DA2 pin connections.

The connection order for the DAC is shown in Table 2. Male-to-female jumper wires are suggested.

Digilent Pmod AD1 ADC

The Digilent Pmod AD1 12-bit, 2 channel ADC [6] also provides an SPI-like communication protocol with up

to 1MSa of 12-bit conversion. It’s operation and connection type are similar to the Pmod DA2 DAC.

1. Connect the AD1 pins (1, 2, 3, 4) to FPGA’S GPIO pins (12, 14, 16, 18) respectively.

2. Connect the AD1 VCC pin to a 3.3V power pin on the FPGA.

3. Connect the AD1 GND pin to ground on the FPGA.

8

Figure 8: The highlighted GPIO pins to connect the Digilent Pmod AD1.

FPGA Pin Name Pmod AD1 Pin Name Pmod AD1 Pin Number

HDR1_12 CS 1

HDR1_14 D0 2

HDR1_16 D1 3

HDR1_18 SCK 4

GND GND 5

VCC3V3 VCC 6
Table 3: Virtex-5 FPGA GPIO pin to PMOD DA2 pin connections.

The connection order for the ADC is shown in Table 3. Male-to-female jumper wires are suggested.

Implementation

To implement the digital system on the FPGA, Xilinx ISE Design Suite 14.7 is used.

1. In a desired file location to store the project files. Open Xilinx ISE Design Suite. Under File, click New

Project. The project wizard in Figure 9 will appear. Give the project a name and save it in any desired

location. Make sure the Top-level source type is HDL. Finally click Next.

9

Figure 9: New Project Wizard.

2. Next, the project settings, shown in Figure 10 will be set to ensure the Xilinx software configures to the

correct FPGA hardware. In the Evaluation Development Board dropdown select Virtex 5 ML506

Evaluation Platform; this will automatically fill-in the correct properties of Product Category,

Family, Device, Package, and Speed. The rest of the settings should match Figure 10. Click Next,

then Finish.

Figure 10: Project property settings.

3. The ZIP folder Parametric_IIR_Filter_FPGA.zip contains the Verilog and Constraints files for this

project. Unzip this folder to a suitable location. As shown in Figure 11, select the Project tab, then click

Add Copy of Source to add all the files to the project. Select all the unzipped files shown in Figure 12.

Click Open, then Next.

10

Figure 11: Add copy of source files to project.

Figure 12: All the necessary source files for implementation.

4. Make sure the module top_level.v is set as the top level module. A top level module is signified by 3

squares with one highlighted green and have all of the other modules nested underneath it. See Figure

13.

Figure 13: How to project looks after importing source files.

11

5. Lastly, the design is synthesized for the FPGA hardware and a programming file (bitstream) is generated

to load the design onto the FPGA. On the bottom-left hand-side in the Processes task bar double-click

Synthesize – XST. It will be noticed that there are numerous warning messages after the synthesis

completes; this is okay and should not result in any problems. Next, double-click Implement Design.

Finally, after the implantation stage is successful, double-click Generate Programming File. The result

should look similar to Figure 14.

Figure 14: Post successful Synthesis, Implementation, and Bitstream.

6. Connect the Xilinx Platform Cable USB II to the FPGA and PC. This device is needed to program the

bitstream from the PC to the FPGA.

Figure 15: Xilinx Platform Cable USB II connected.

7. In Xilinx ISE, select iMPACT from the Tool dropdown. This will open the iMPACT editor, the tool to

load the bitstream to the FPGA. See Figure 16. In the iMPACT tool, double-click Boundary Scan,

follow instructions to Right click to Add Device, and click Initialize Chain. See Figure 17.

12

Figure 16: Opening ISE iMPACT.

Figure 17: Initialize chain to program FPGA.

8. The last step is to set the Generated Programming File to be the configuration file for the FPGA. Make

sure the targeted FPGA device in the tool chain, labeled xc5vsx50t, is highlighted green as shown in

Figure 18. Right click on the device, then choose Assign New Configuration File. From the file

explore that pops-up, navigate to the main ISE project folder and select top_level.bit. See Figure 19.

Figure 18: Assign New Configuration File.

13

Figure 19: Selecting the generate programming file (.bit) to program the FPGA.

9. Right click on the device xc5vsx50t and click Program. See Figure 20. Now the FPGA is programmed.

Figure 20: Program the generated programming file to the FPGA.

Graphical User Interface

The graphical user interface (GUI) provides a visual guide to design the filter response, generate the fixed-point

coefficients, and communicate those coefficients to the FPGA via serial communication. This GUI is built in

Python 3 using the PyQt5 graphics library. Custom class and functions were developed for the fixed-point filter

design of the biquad IIR filter.

14

Figure 21: Python based GUI.

Using the GUI

1. In a preferred directory unzip the file Parametric_IIR_Filter_GUI.zip to get the GUI source code. This

folder contains to subfolders called PySP and GUI. These two directories must be in the same parent

directory. The command line (or terminal) will be used to launch the GUI within the Python

environment.

2. Open a command line terminal of choice that can be used to run Python 3 applications with the required

libraries (i.e. this may be a virtual environment for some users). Navigate into the GUI directory using

the “cd” command.

3. Before running the command to start the GUI, it is necessary to know the COM port that the USB

UART breakout board is communicating over. For example, if Windows is being used, then the COM

port can be found in the Device Manager control panel. Figure 22 shows that the breakout board is

communicating on “COM10.” For other operating systems finding the communication port will differ.

Figure 22: Windows Device Manager to find COM port for USB to UART breakout.

4. In the terminal run the command python main.py --com_port [COM port name], where COM port

name is the name of the communication port discussed in step 3. See Figure 23.

15

Figure 23: Example of command to start GUI.

Figure 24: How the GUI looks when opened.

5. Adjust the gain, center-frequency, and bandwidth as desired. As the sliders are adjusted the frequency

response and pole-zero plot will reflect the expected response of the filter. Once the desired filter

response is obtained, click the Send Coefficients button to transmit the filter coefficients to the FPGA.

Testing and Verification

The system is ready to be tested. A function generator is used to supply the input signal to the ADC. The Pmod

AD1 ADC allows an input voltage range of 0V - 3.3V, so have the function generator output be within this

range. Hook the function generators probe to the ADC’s analog input on channel 1 (A1). Next, the two channels

of the oscilloscope are attached to measure the original input signal and resulting filtered output signal. The

comparison is useful to identify that the magnitude frequency response corresponds to the design. One

oscilloscope probe is connected to the DAC output on channel 1 to measure the filtered signal and the second

oscilloscope probe is connected on channel 2 of the DAC to measure to original signal sampled from the

function generator.

16

Figure 25: The testing and verification setup diagram.

Figure 26: Test and verification setup.

The output from the DAC of the filtered signal will have a magnitude scaled down by a factor of 4. This is

ensuring the DAC will never be the source of saturation or encounter overflow that will corrupt the signal.

Below are several test cases that verify the desired operation of parametric IIR implementation.

Figure 27: All pass, unity gain of signal. The input signal is given in the color blue and the output signal is the color yellow. However,

since the filter is unity gain across all frequencies, the signals in the oscilloscope output are nearly on-top of one another.

17

Figure 28: The parametric EQ parameters specified were G=+10.0dB, F_c = 1000Hz, BW=632 Hz. The input signal (blue) is a

1000 Hz sine. The output signal (yellow) is the 10dB amplified.

Figure 29: The parametric EQ parameters specified were G=-10.0dB, F_c = 1000Hz, BW=632 Hz. The input signal (blue) is a 1000

Hz sine. The output signal (yellow) is the 10dB attenuated.

Figure 30: The parametric EQ parameters specified were G=+15.0dB, F_c = 9000Hz, BW=812 Hz. The input signal (blue) is a 1000

Hz square wave. Notice, the output signal (yellow) has the 9th harmonic amplified (9000Hz) by about 15dB.

18

Figure 31: The parametric EQ parameters specified were G=+15.0dB, F_c = 3000Hz, BW=66 Hz. The input signal (blue) is a 1000

Hz square wave. Notice, the output signal (yellow) has the 3rd harmonic amplified (3000Hz) by about 15dB.

Figure 32: The parametric EQ parameters specified were G=+15.0dB, F_c = 55Hz, BW=40 Hz. The input signal (blue) is a 1000 Hz

sine wave. Notice, the output signal (yellow) is extremely noisy and corrupted. This is due to the fixed-point poles being outside the

unit circle. This is an example of the difficulties of converting an infinite precision filter design to a fixed-point design.

19

References

[1] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Harlow: Pearson, 2014.

[2] R. Bristow-Johnson, “RBJ Audio-EQ-Cookbook¶,” RBJ Audio-EQ-Cookbook - Musicdsp.org

documentation, 04-May-2005. [Online]. Available:

https://www.musicdsp.org/en/latest/Filters/197-rbj-audio-eq-cookbook.html. [Accessed: Feb

2020].

[3] D. G. Manolakis and V. K. Ingle, Applied digital signal processing: theory and practice. Cambridge,

U.K.: Cambridge University Press, 2011. ch. 15, pp. 902-967.

[4] SparkFun, SparkFun USB UART Serial Breakout - CY7C65, Accessed on: May 12, 2020.

[Online]. Available: https://www.sparkfun.com/products/13830

[5] “Pmod DA2: Two 12-bit D/A Outputs,” Digilent. [Online]. Available:

https://store.digilentinc.com/pmod-da2-two-12-bit-d-a-outputs/. [Accessed: Apr-2020].

[6] “Pmod AD1: Two 12-bit A/D Inputs,” Digilent. [Online]. Available:

https://store.digilentinc.com/pmod-ad1-two-12-bit-a-d-inputs/. [Accessed: Apr-2020].

[7] Xilinx, ML505/ML506/ML507 Evaluation Platform User Guide, UG347 datasheet. May. 2011.

https://www.sparkfun.com/products/13830

